a2 United States Patent

St-Pierre

US009406138B1

(10) Patent No.: US 9,406,138 B1
(45) Date of Patent: Aug. 2, 2016

(54) SEMI-AUTOMATIC POLYLINE
EXTRACTION FROM POINT CLOUD

(71) Applicant: Bentley Systems, Incorporated, Exton,
PA (US)
(72) Inventor: Mathieu St-Pierre, Ste-Brigitte De
Laval (CA)
(73) Assignee: Bentley Systems, Incorporated, Exton,
PA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 296 days.
(21) Appl. No.: 14/029,576
(22) Filed: Sep. 17, 2013
(51) Imt.ClL
GO6T 7/00 (2006.01)
(52) US.CL
CPC i GO6T 7/0046 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,093,869 A 3/1992 Alves et al.
5,978,504 A 11/1999 Leger
6,133,921 A 10/2000 Turkiyyah et al.
7,864,302 B2 1/2011 Pook et al.
7,995,054 B2 8/2011 Wheeler et al.
8,108,119 B2 1/2012 Southall et al.
8,199,977 B2 6/2012 Krishnaswamy et al.
8,798,372 B1* 82014 Korchev ... GO6K 9/00637
382/195
2005/0100220 Al* 5/2005 Keaton GO6K 9/0063
382/191
2007/0130239 Al* 6/2007 Wheeler GO6K 9/00201
708/130
2009/0103773 Al 4/2009 Wheeler et al.

2009/0190798 Al 7/2009 Lee etal.

2010/0017060 Al 1/2010 Zhang et al.

2010/0034426 Al 2/2010 Takiguchi et al.

2010/0164951 Al 7/2010 Stewart

2010/0284572 Al* 11/2010 Lukas ... GO6K 9/00201
382/107

2010/0315412 Al 12/2010 Sinha et al.

2011/0052079 Al 3/2011 Tamura

2011/0118967 Al 5/2011 Tsuda

2012/0069012 Al 3/2012 Facchin et al.

FOREIGN PATENT DOCUMENTS

CN 101763512 A * 3/2012 ... GO1S 7/48
OTHER PUBLICATIONS

Harvey, W. A., and David M. McKeown Jr. “Automatic Compilation
of 3D Road Features Using LIDAR and Multi-spectral Source Data.”
Proceedings of the ASPRS Annual Conference. 2008.*

(Continued)

Primary Examiner — Daniel Hajnik

(74) Attorney, Agent, or Firm — Cesari and McKenna, LLP;
James A. Blanchette

(57) ABSTRACT

In one embodiment, a technique is provided for semi-auto-
matically extracting a polyline from a linear feature in a point
cloud. The user may provide initial parameters, including a
point about the linear feature and a starting direction. A linear
feature extraction process may automatically follow the lin-
ear feature beginning in the starting direction from about the
selected point. The linear feature extraction process may
attempt to follow a linear segment of the linear feature. If
some points may be followed that constitute a linear segment,
a line segment modeling the linear segment is created. The
linear feature extraction process then determines whether the
end of the linear feature has been reached. If the end has not
been reached, the linear feature extraction process may
repeat. If the end has been reached, the linear feature extrac-
tion process may return the line segments and create a
polyline from them.

21 Claims, 23 Drawing Sheets

US 9,406,138 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Sithole, George, and George Vosselman. “Experimental comparison
of filter algorithms for bare-Farth extraction from airborne laser
scanning point clouds.” ISPRS journal of photogrammetry and
remote sensing 59.1 (2004): 85-101.*

Hatger, Carsten, and Claus Brenner. “Extraction of road geometry
parameters from laser scanning and existing databases.” International
Archives of Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences 34.part 3 (2003): W13.*

Lin, Xiangguo, et al. “Semi-automatic extraction of ribbon roads
from high resolution remotely sensed imagery by T-shaped template
matching.” Geoinformatics 2008 and Joint Conference on GIS and
Built Environment: Classification of Remote Sensing Images. Inter-
national Society for Optics and Photonics, 2008.*

Zhou, Jun, Walter F. Bischof, and Terry Caelli. “Road tracking in
aerial images based on human-computer interaction and Bayesian
filtering.” ISPRS journal of photogrammetry and remote sensing 61.2
(2006): 108-124.*

Zhao, Jiaping, Suya You, and Jing Huang. “Rapid extraction and
updating of road network from airborne LiDAR data.” Applied Imag-
ery Pattern Recognition Workshop (AIPR), 2011 IEEE. IEEE,
2011.*

Arastounia, Mostafa, “Automatic Classification of LIDAR Point
Clouds in a Railway Environment,” Faculty of Geo-Information Sci-
ence and Earth Observation of the University of Twente, Enschede,
The Netherlands, Mar. 2012, pp. 1-83.

“Delivering Value from LiDAR System Data,” Certainty 3D-Soft-
ware Products, <http://www.certainty3d.com/products/topodot/>,
Retrieved on Aug. 16, 2013, pp. 1-2.

“Exelis,” Exelis Visual Information Solutions, < http://www.
exelisvis.com/docs/tutorialprocessdatasample. html>, Retrieved on
Aug. 16, 2013, pp. 1-8.

“Getting Started in PointCloud CAD 2010,” MicroSurvey Software,
Inc., 2009, pp. 1-192.

Jwa, Y., et al., “Automatic 3D Poweline Reconstruction Using Air-
borne LiDAR Data,” IAPRS, vol. 38, Part 3/W8, Paris, France, Sep.
1-2, 2009, pp. 1-6.

Kamphaus, Benjamin D., “LIDAR Data Analysis Software,” GEO
Informatics, Jan./Feb. 2012, pp. 18-20.

Melzer, Thomas, et al. “Extracting and Modeling of Power Lines
from ALS Point Clouds,” 2004, pp. 1-8.

“TerraScan,” Terrasolid, <http://www.terrasolid.fi/system/files/
TerraScan__eng 2.pdf>, Retrieved on Aug. 16, 2013, pp. 1-2.
“TerraScan User Guide,” Arttu Soininen, Terrasolid, Oct. 3, 2011, pp.
1-311.

“VGA4D SmartLiDAR™ Explorer,” Virtual Geometrics, Inc., 2012,
pp. 1.

“VRMesh v7.6: 3D Point Cloud and Mesh Processing Software,”
VirtualGrid, <http://www.vrmesh.com>, Retrieved on Aug. 16,
2013, pp. 1-4.

Wang, Wenping, et al., “Fitting B-Spline Curves to Point Clouds by
Curvature-Based Squared Distance Minimization,” ACM Transac-
tions on Graphics, vol. 25, No. 2, Apr. 2006, pp. 214-238.

* cited by examiner

U.S. Patent Aug. 2, 2016 Sheet 1 of 23 US 9,406,138 B1

FIG. 1 100

US 9,406,138 B1

Sheet 2 of 23

Aug. 2, 2016

U.S. Patent

2

FIG

U.S. Patent Aug. 2, 2016 Sheet 3 of 23 US 9,406,138 B1

U.S. Patent Aug. 2, 2016 Sheet 4 of 23 US 9,406,138 B1

FIG. 4 5~ 400

U.S. Patent Aug. 2, 2016 Sheet 5 of 23 US 9,406,138 B1

FIG. 5 5~ 300

U.S. Patent Aug. 2, 2016 Sheet 6 of 23 US 9,406,138 B1

FIG. 6
MEMORY 630
OPERATING SYSTEM 635
600 <,
3-D IMAGING SOFTWARE 640
LINEAR FEATURE EXTRACTION 842
IUNEAR FEATURE FOLLOWING 643 l
EOUERY BOX CREATION 644 '
§PO[NTS FOLLOWING 645 E
\lNTERSECTlON DETEGTION 646
lUNEAR FEATURE MERGING 847 I
|LINE SEGMENT CREATION 648 I
| GAP JUMPING 849 |
PROGESSOR MEMORY CONTROLLER
610 825
] {
/ HOST BUS 520 |
L /
BUS CONTROLLER
€45
) {
/ /G BUS 650 |\
L J
VIDEC INPUT STORAGE NETWORK
DISPLAY DEVICE(S) DEVICE INTERFACE
SUBSYSTEM 860 865 880
¢ COMPUTER |
DISPLAY _ NETWORK
SCREEN 7 590
670

U.S. Patent Aug. 2, 2016 Sheet 7 of 23 US 9,406,138 B1

FIG. 7

U.S. Patent Aug. 2, 2016 Sheet 8 of 23 US 9,406,138 B1

FIG. 8 o 800

830 - Ask the usera point
gloud

840 - Azk the user @ starting
search ncation .

850 - &sk the wuser a starting
zegrchdirection

860 - automaticaliy follow
the line points

880 - &sk the usar the
ipcationto continue from

MS?O Does Ehe yser

k‘:{an* tocontinue .

Yes

t'(';;:

modeling the foliowed lingar

i 800 - Create a poiyiine
festure

U.S. Patent Aug. 2, 2016 Sheet 9 of 23 US 9,406,138 B1

FIG. 9 Nz 900

910— Fetch points around current

location in the point cloud

W

920 — Follow points describing a

linear semment

330~ Are there ™,

el linear segment s

Yes

940 — Create line model fraom

linear segment points

— fetch new

ANn

o 'O— |5 B
_ of linear
g Eature? ot e e

Yas

R, _fo jump over?

Mo

980 — Return created linear
feature

U.S. Patent

Aug. 2, 2016

FIG. 10A

i

- R

e
e
T

FIG. 10B

Sheet 10 of 23

S
R
hs

3

R 3

SR

I
o

US 9,406,138 B1

1050

U.S. Patent Aug. 2, 2016 Sheet 11 of 23 US 9,406,138 B1

FIG. 11 1100

1110-Create query box along
current search direction

- %
1120 — Request points presentin - 1140 — Decrease length of
query box . . query box

“1130- Are there
: more points than

t Mo

’io—;ﬂxre there ™
less points than

i Yes
%

1160- Increase length of gquery box

i
7 R

1170 —Return points and current
query box parameters

4

US 9,406,138 B1

Sheet 12 of 23

Aug. 2, 2016

U.S. Patent

1200

.12

FIG

R

s

2
Z 5

i

U.S. Patent

Aug. 2, 2016

FIG. 1

Sheet 13 of 23

3 o 1300

1310~ 8 (i POINES & G

US 9,406,138 B1

i Iocation

1345~ Try o turn g

"1350-1

o, D found?

Na

1320 - Check intarsechion

1305 ~Lipdate direction ang

evtey)

1360

|

and diractice

1330~ &dvancs tocation

1355 Fhiack i Tocation

15 b qusry by

3

1335 ~ Thack directon

340 Heed e

stop follewing?

Yeu

11365~ Heturr oo
T arad currant follewing s

U.S. Patent Aug. 2, 2016 Sheet 14 of 23 US 9,406,138 B1

FIG. 14
G o 1400

e

-

o .
e,

X

et 4B B thisra T,
e 1419

o
»
o) BAGTE e,
e 143050 o,
sl Ty G et

cimns
= X
-

Bees

Simend o

U.S. Patent Aug. 2, 2016 Sheet 15 of 23 US 9,406,138 B1

FIG. 15

1500
/

Legend

Search displacements

(:} Search spheres

% Cuerent search location

U.S. Patent Aug. 2, 2016 Sheet 16 of 23 US 9,406,138 B1

U.S. Patent Aug. 2, 2016 Sheet 17 of 23 US 9,406,138 B1

FIG. 17 1700
/
1710- Compute linear feature
direction vectors
1720 - Find other direction { 1l750.—Create nEW“St,Of_
. . s direction vectors containing
vectors with minimum angle
: merged and unmerged ones

““1730- Are there

minimurm angles

_ less then
threshald?

1740—Merge direction
e VRCHOTS With angles less than
Yes _ threshold

1760- Return unmerged linear
feature directionvectors

U.S. Patent Aug. 2, 2016 Sheet 18 of 23 US 9,406,138 B1

FIG. 1
G. 18 A/1800

Angle bebwsen: bwo lingar
feature direction veckors

S
5

Lirnear Feature
direction vertors Current zearch

iocation

Lirear features found for
kept directior

U.S. Patent Aug. 2, 2016 Sheet 19 of 23 US 9,406,138 B1

FIG. 19

P vﬁm%‘
e L
915 iwstEus e
sef i g
-,,.}
-
. o
", f/ Ma
o, RO GO
"\,
M, e
P Yes

E" 1950~ Updatn sesren }

} f 1925 Batisen o s]

shirectingy

U.S. Patent Aug. 2, 2016 Sheet 20 of 23 US 9,406,138 B1

FIG. 20 o 2000

Tiotted lineto extract

Searchragion

e iy furnpi ngdistance

U.S. Patent Aug. 2, 2016 Sheet 21 of 23 US 9,406,138 B1

FIG. 21

2100
e

U.S. Patent Aug. 2, 2016

FIG. 22
G o 2200

Loncendric
~F gircles
e

-
AT g
i,
S,
"

\
§ : 3
: Cusrent
o concentric cirge
; i /
]
H

center focation

s i
Tuery spheres R

Sheet 22 of 23 US 9,406,138 B1

U.S. Patent Aug. 2, 2016 Sheet 23 of 23 US 9,406,138 B1

2300
/

M sssssnssosossossssosossot

[2375 ~ Betwrn that £50

focation mmpingcennat e sone

US 9,406,138 B1

1
SEMI-AUTOMATIC POLYLINE
EXTRACTION FROM POINT CLOUD

TECHNICAL FIELD

The present disclosure relates to point clouds, and more
specifically to techniques for semi-automatically extracting
polylines from linear features of point clouds.

BACKGROUND INFORMATION

A point cloud is a set of points in three-dimensional (3-D)
space that represents surfaces of one or more objects (e.g., in
the physical environment). Each point of a point cloud is
typically associated with coordinates (e.g., an x-axis coordi-
nate, a y-axis coordinate, and a z-axis coordinate) of a coor-
dinate system (e.g., a Cartesian coordinate system). Point
clouds are often created by 3-D scanners that employ light
detection and ranging (LIDAR) technology. However, other
remote sensing technology, such as stereoscopic imagery,
may be employed to create point clouds. Modern point clouds
often contain millions or even billions of points. By use of
large numbers of individual points, is point clouds may rep-
resent objects with a high level of precision. With such pre-
cision, a point cloud may be used to capture narrow elongated
objects, such as transmission lines, railroad tracks, road
markings and the like. Such narrow elongated objects are
referred to herein generally as “linear features.”

In addition to coordinates, each point of a point cloud may
be associated with certain properties. In some cases, for
instance when a point cloud is obtained using LIDAR tech-
nology, each point in the point cloud may also be associated
with a reflectance intensity (e.g., such that each point has an
x-axis coordinate, a y-axis coordinate, a z-axis coordinate,
and a reflectance intensity). The reflectance intensity can be
used to discriminate between objects. For example, road
markings usually reflect light more than the bare asphalt of'a
road surface. By looking to the reflectance intensity of points,
a system may be able to discriminate between the road mark-
ings and the bare road surface, despite the two being part of
the same geometric surface.

When visually displayed, points of a point cloud may be
colored (e.g., in gray-scale or with red-green-blue (RGB)
values) based on one or more properties. For example, points
may be colored based on their reflectance intensity, for
example, to visually distinguish between road markings and
the bare asphalt of a road surface. FIG. 1 is a view 100 of an
example point cloud that has been colored based on reflec-
tance intensity.

Similar to pixels of a two-dimensional (2-D) image, points
of point clouds often cannot be effectively used in engineer-
ing applications in their native form. While a point cloud may
provide a precise picture of objects in a scene, the points
themselves are generally not suited for direct use in analyzing
the scene. For example, points generally cannot be directly
used in computing geometric properties (e.g., length, surface
area, volume, etc.) of objects. To have a form that can be more
easily analyzed, a line-based model may be reconstructed
from a point cloud. A line-based model generally represents
objects using one or more polylines, i.e. continuous lines
composed of one or more line segments. For example, a
polyline may represent a linear feature (e.g., a road marking,
arailroad track, a transmission line, etc.). The polylines of the
line-based model, rather than the underlying points, can be
subject to the desired analysis.

Creating polylines to represent linear features in a point
cloud may be challenging. Some systems employ a manual

10

15

20

25

30

35

40

45

50

55

60

65

2

approach. However, creating polylines manually may present
problems. One problem that stems from the non-solid nature
of point clouds is that objects located behind a region of
interest may become visible. When viewed from afar, a point
cloud may appear solid. However, when viewed closer it
becomes apparent that the point cloud is really composed of
discrete points with spaces in between. If a user zooms in on
aparticular region of interest in a point cloud, points describ-
ing objects located behind the region of interest may become
visible through the spaces between points in the foreground.

FIG. 2 is a view 200 of an example point cloud showing an
overpass 210 having road markings 220 as viewed from afar.
In FIG. 2, the road markings 220 on the overpass 210, includ-
ing the road markings near reference dot 230 on the over-
pass’s surface, are clearly visible.

FIG. 3 is an example of an enlarged view 300 of the point
cloud of FIG. 2. As can be seen, after zooming in on a portion
of the overpass, the road markings near reference dot 230
begin to vanish. Worse still, some road markings 310 from
another roadway below the overpass, located near reference
dot 320, may start to become visible, confusing the view.

Another problem that stems from the non-solid nature of
point clouds is that it may be difficult to select the correct
points to “snap” to. During manual creation of a polyline, a
user typically “snaps” to points, to establish a position of the
line in 3-D space. However, given that the point cloud is not
solid, it is often difficult to select the correct points. A point
may appear to be a part of the desired object when the point
cloud is viewed from one perspective, but it may become
obvious that the point is not part of the desired object (e.g., is
part of an object above or below the desired object), if the
point is cloud is viewed from another perspective.

FIG. 4 is an example near top down view 400 of a point
cloud showing a polyline 410 that has been drawn in an
attempt to model a road marking on an overpass. From a near
top down perspective, it appears that the polyline 410 is a
good representation of the road marking. As in the other
examples, reference dot 230 is on the overpass’s surface,
while reference dot 320 is located on the roadway below.

FIG. 5 is an example of an isometric view 500 of the point
cloud of FIG. 4. From the isometric perspective, it becomes
clear that one end of the polyline 410 is not even near the road
marking on the overpass’s surface (near reference dot 230).
Instead, one endpoint of the polyline 410 is actually near a
roadway passing below the overpass (near reference dot 320)

In addition to these problems stemming from the non-solid
nature of point clouds, further problems are often encoun-
tered when trying to manually create polylines to represent
linear features. One such problem is that a user may be bur-
dened having to select a large number of points to accurately
model a linear features. As mentioned above, a point cloud
may include millions or billions of points, and therefore can
describe linear features in great detail. To accurately repre-
sent some linear features (e.g., curving linear features, such as
transmission lines), a polyline may have to be “snapped” to a
large number of individual points to capture the contours of
the curves. This may require hours of tedious manual opera-
tions.

Yet another problem may stem from occlusion of some
parts of linear features by other objects. For example, refer-
ring back to the example in FIG. 3, it can be seen that the road
marking near reference dot 310 is partly hidden by the points
that represent the overpass. To fully see the occluded linear
features, a user may have to clip the point cloud. For example,
in reference to FIG. 3, a user may have to clip the portion of

US 9,406,138 B1

3

the point cloud that represents the overpass. However, this
requires extra operations and therefore decreases productiv-
ity.

Accordingly, there is a need for a technique that can extract
polylines from a point cloud semi-automatically, to allow for
fast and precise modeling of linear features of a is point cloud.

SUMMARY

In one embodiment, the shortcomings of the prior art are
addressed by a technique for semi-automatically extracting a
polyline from a linear feature in a point cloud. The user may
provide initial parameters, including a point in the point cloud
about the linear feature and a starting direction along which
points are to be followed. Once these parameters are entered,
a linear feature extraction process may automatically follow
the linear feature beginning in the starting direction from
about the selected point until it can no longer be followed.
Such following may involve repeating a sequence of opera-
tions. The linear feature extraction process may first attempt
to follow a linear segment of the linear feature. If some points
may be followed that constitute a linear segment, a line seg-
ment modeling the linear segment is created. The linear fea-
ture extraction process then determines whether the end of the
linear feature has been reached. If the end of the linear feature
has not been reached, the linear feature extraction process
may repeat, and try to follow another linear segment of the
linear feature. If the end has been reached, the linear feature
extraction process may return the line segments and create a
polyline from them, modeling the linear feature of the point
cloud.

A number of special features may be implemented by the
semi-automatic linear feature extraction process. Among
other features, an intersection detection sub-process may
determine when an intersection point of a linear feature has
been reached and re-quest the user provide an appropriate
search direction to use after that intersection point. Further, a
gap jumping sub-process may determine whether there the
end of the linear feature is a true end, or is simply an occlusion
of the linear feature or a non-continuous portion of a linear
feature. If it is determined that there is a jumpable gap, the
linear feature extraction process may repeat again and try to
follow another linear segment of the linear feature after the
gap.

It should be understood that the linear feature extraction
process may include a variety of other features, including
other features discussed below, and variations thereof. This
Summary is intended simply as a brief introduction to the
reader, and does not imply is that the features mentioned
herein are necessary, or essential, to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description below refers to the accompanying
drawings of example embodiments, of which:

FIG. 1 is a view of an example point cloud that has been
colored based on reflectance intensity;

FIG. 2 is a view of an example point cloud showing an
overpass having road markings as viewed from afar;

FIG. 3 is an example of an enlarged view of the point cloud
of FIG. 2.

FIG. 4 is an example near top down view of a point cloud
showing a polyline that has been drawn in an attempt to model
a road marking on an overpass;

FIG. 5 is an example of an isometric view of the point cloud
of FIG. 4;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 is a block diagram of an example electronic device
that may be used in semi-automatically extracting a polyline
from a linear feature of a point cloud;

FIG. 7 is an example user interface for use with a linear
feature extraction process;

FIG. 8 is an example sequence of steps for user interaction
with the linear feature extraction process;

FIG. 9 is an example sequence of steps executed by the
automatic linear feature following sub-process to automati-
cally follow a linear feature;

FIG. 10A is an example of query boxes imposed upon a
point cloud about a linear feature;

FIG. 10B shows the query boxes of FIG. 10A about the
linear feature with the point cloud removed;

FIG. 11 is an example sequence of steps executed by the
query box creation sub-process to extract points around a
search location;

FIG. 12 is an example of query boxes aligned with a curv-
ing linear feature;

FIG. 13 is an example sequence of steps executed by the
points following sub-process to follow points of a linear fea-
ture in a point cloud;

FIG. 14 is an example sequence of steps executed by the
intersection detection sub-process to check if an intersection
point of the linear feature has been reached;

FIG. 15 is a diagram showing example search spheres
disposed at search directions and separated from a current
search location by search displacements;

FIG. 16 is a diagram illustrating linear features found by
the intersection detection sub-process;

FIG. 17 is an example sequence of steps executed by the
linear feature merging sub-process to merge linear features;

FIG. 18 is a diagram illustrating properties used by the
linear feature merging sub-process to merge linear features;

FIG. 19 is an example sequence of steps executed by a line
segment creation sub-process to create a line segment mod-
eling a linear segment of a linear feature;

FIG. 20 is a diagram showing a top view of an example
cone-like search region that may be used by the gap jumping
sub-process when jumping gaps of a non-continuous linear
feature;

FIG. 21 is an isometric view of the example cone-like
search region from FIG. 20;

FIG. 22 is a front view of example search spheres distrib-
uted along a series of concentric circles forming a cone-like
search region; and

FIG. 23 is an example sequence of steps executed by gap
jumping sub-process to extract points around a search loca-
tion.

DETAILED DESCRIPTION

FIG. 6 is a block diagram of an example electronic device
600, (e.g., a computer), that may be used in semi-automati-
cally extracting a polyline from a linear feature of a point
cloud. The electronic device 600 includes at least one proces-
sor 610 coupled to a host bus 620. The processor 610 may be
any of a variety of commercially available pro-cessors, such
as an Intel x86 processor, or another type of processor. A
volatile memory 630, such as a Random Access Memory
(RAM), is coupled to the host bus 620 via a memory control-
ler 625. The memory 630 is configured to store at least a
portion of computer-executable instructions and data for an
operating system 635 while the electronic device 600 is oper-
ating. In addition, the memory 630 may store at least portions
of'3-D Imaging software 640. The 3-D Imaging software 640
may be Bentley Descartes V8i SELECTSeries 4 software,

US 9,406,138 B1

5

available from Bentley Systems Inc. In one embodiment, the
3-D Imaging software 640 includes a linear feature extraction
process 642. The linear feature extraction process 642
includes a number of sub-processes that perform constituent
functions, including an automatic linear feature following
sub-process 643, a query box creation sub-process 644, a
points following sub-process 645, an intersection detection
sub-process 646, a linear feature merging sub-process 647, a
line segment creation sub-process 648, and a gap jumping
sub-process 649.

The host bus 620 of the electronic device 600 is coupled to
an input/output (I/0O) bus 650 through a bus controller 645. A
video display subsystem 655 may include a display screen
670, and hardware to drive the display screen. The video
display subsystem 655 is coupled to the 1/O bus 650. The
display screen 670, among other functions, may show a user
interface of the 3-D Imaging software 640, and more specifi-
cally the linear feature extraction process 642. One or more
input devices 660, such as a keyboard, a mouse, etc., are
provided and used for interaction with the electronic device
600, and the 3-D Imaging software 640 and linear feature
extraction process 642 thereof. A persistent storage device
665, such as a hard disk drive, a solid-state drive, or other type
or persistent data store, is coupled to the I/O bus 650, and may
persistently store computer-executable instructions and data,
that are available to be loaded to the volatile memory 630
when needed. For example, computer-executable instructions
and data for the operating system 635, the 3-D Imaging Soft-
ware 640, and the linear feature extraction process 642
thereof. The I/O bus 650 may further be coupled to a network
interface 680 that interfaces with a computer network 690.
The computer network 690 may allow communication
between the electronic device 600 and other devices, using
any of a number of well known networking protocols, includ-
ing wireless networking protocols, to permit a variety of
distributed, collaborative or remote computing configura-
tions.

FIG. 7 is an example user interface 700 for use with the
linear feature extraction process 642. Various parameters are
introduced in relation to the user interface 700. Further expla-
nation of the use of these parameters is reserved for discus-
sion further below. In panel 710, a user may select a point in
the point cloud about a linear feature, and graphically indicate
a starting direction along which points are to be followed. In
panel 720, the user may enter various other parameters in
various fields. These fields may include a max line width field
725 that receives a maximum width of the polyline to be
extracted, a segment length field 730 that, when selected, may
force every segment of a polyline created for a given linear
feature to have a same length, and a check intersection field
735 that, when selected, may cause the intersection detection
sub-process 646 to be activated. Further, the fields may
include a low/high intensities field 740, which receives a
reflectance intensity range that determines which points of
the point cloud need to be considered, a highlight processed
points field 745, that when selected, causes points to be col-
ored whose reflectance intensity falls inside the selected
reflectance intensity range, and a use all point clouds field 750
that, when selected, causes use of all point clouds that are
available, when there are multiple potential point clouds
available. Still further the fields may include a gap jumping
field 755, that controls whether the gap jumping sub-process
649 is to be executed, a max length field 760 that receives a
maximum allowed distance of a jumpable gap, a search angle
field 765 that receives a search angle to used during a search
for a location to jump to, and a confirm jump field 770 that,

10

15

20

25

30

35

40

45

50

55

60

65

6

when selected, causes control to be returned to the user after
the occurrence of a successtul gap jump.

FIG. 8 is an example sequence of steps 800 for user inter-
action with the linear feature extraction process 642. At step
810, the user starts the linear feature extraction process 642.
At step 820, a check is performed whether the use all point
clouds field 750 of the user interface 700 has been selected,
indicating all available point clouds should be utilized. If all
available point clouds are not to be utilized, at step 830, the
user is prompted to specify the point cloud that includes the
linear feature of interest, and then execution proceeds to step
840. If all available point clouds are to be utilized, execution
proceeds directly to step 840. At step 840, the user is
prompted to select a point about the linear feature. Once the
point about the linear feature has been selected by the user, at
is step 850, the user is prompted to enter a starting direction
along which points are to be followed. Usually this direction
is a direction along the linear feature near the point selected in
step 840. At step 860, the linear feature extraction process 642
automatically follows points until the linear feature can no
longer be followed, as discussed in more detail below. At step
870, the user is prompted whether the linear feature extraction
process 642 should continue following points from a current
location, i.e. the last location before the linear feature extrac-
tion process 642 could no longer follow points of the linear
feature. If the linear feature extraction process 642 should
continue following points, the user is prompted, at step 880, to
enter another point in the point cloud about the linear feature.
The displacement between this new point and the current
location is then used as a new search direction. Execution then
proceeds back to step 860, where the linear feature extraction
process 642 automatically follows the linear feature using the
new point and the new search direction, to follow more points
representing the linear feature. If not, at step 890, the linear
feature extraction process 642 ends, and a polyline is created
that represents the linear feature.

FIG. 9 is an example sequence of steps 900 executed by the
automatic linear feature following sub-process 643 to auto-
matically follow a linear feature. The sequence of steps 900
may represent steps performed as part of step 860 in FIG. 8.
At step 910, the automatic linear feature following sub-pro-
cess 643 extracts points around a current search location.
Initially, the current search location is defined by a user-
selected point and direction. The number of points fetched
may be kept small in light of memory size limitations of the
electronic device 600. At step 920, from the fetched points,
the line following sub-process 643 tries to follow one linear
segment of the linear feature in the point cloud. At step 930,
it is determined whether points describing the linear segment
can be found. If some points describing a linear segment are
found, at step 940, a line segment modeling the linear seg-
ment is created, for example, using a RANdom SAmple Con-
sensus (RANSAC) algorithm. After this, or if no points
describing a linear segment can be found, at step 950 the
automatic linear feature following sub-process 643 checks if
other points need to be fetched from the point cloud. If other
points need to be fetched, is execution loops back to step 910,
where the automatic linear feature following sub-process 643
extracts points using the last location where points where
followed as a current search location. If no other points need
to be fetched, execution proceeds to step 960, where the
automatic linear feature following sub-process 643 checks if
the end of the linear feature has been reached. If the end has
not been reached, execution loops back to step 920, where the
automatic linear feature following sub-process 643 tries to
follow another segment of the linear feature. If the end has
been reached, at step 970, a gap jumping sub-process 649

US 9,406,138 B1

7

determines whether there is a jumpable gap. If there is a
jumpable gap, the gap jumping sub-process 649 jumps to a
first available point on the other side of the gap, and execution
loops back to step 920, where a linear segment is flowed from
the first available point. If there is no jumpable gap, execution
proceeds to step 980 where the followed linear feature is
returned. Based on user-input in the user interface 700 of FIG.
7, the gap jumping may sometimes be disabled. In such case,
step 970 may be skipped over.

Given the large size of some point clouds and memory size
limitations of the electronic device 600, it may be impractical
or impossible to load all the points representing a linear
feature into memory at one time. As such, a certain amount of
points defined by a query box may be loaded and handled at
a given time. FIG. 10A is an example of query boxes 1010,
1020, 1030 imposed upon a point cloud 1000 about a linear
feature 1040. FIG. 10B shows the query boxes 1010, 1020,
1030 about the linear feature 1040 with the point cloud
removed. The query boxes 1010, 1020, 1030 may have dif-
fering sizes (e.g., lengths, widths and heights). In one
embodiment, the size of the query box is adapted automati-
cally based on a point density around the current search
location.

FIG. 11 is an example sequence of steps 1100 executed by
the query box creation sub-process 644 to extract points
around a search location. The sequence of steps 1100 may
represent steps performed as part of the step 910 in FIG. 9. At
step 1110, a query box is created that is aligned with the
current search direction. The length of the query box is ini-
tially set, for example, to a value equal to the user-selected
maximum line width parameter multiplied by 100, or some
other value. The width and height of the query box are initial
set to values, for example, to values defined by a ratio, or
defined in some other manner. For example, the values for the
width and height may be set to have a ratio of is width-to-
length and a ratio of height-to-length equal to 0.2. By aligning
the query box with the current search direction, the number of
unnecessary points of the point cloud that are queried may be
minimized, thus maximizing the speed of the linear feature
extraction process 642. At step 1120, the query box creation
sub-process 644 extracts points of the point cloud that fall
within the query box. At step 1130, the number of points
extracted is compared to a first threshold. In some cases, the
length of the query box may initially be set to a value that
returns an excessive number of points, which would result in
the number of points extracted exceeding the first threshold.
If the number of points exceeds the a first threshold (e.g.,
200,000 points or some other value indicating an excessive
number of points), execution proceeds to step 1140, where the
query box creation sub-process 644 automatically decreases
the length of the query box by a factor (e.g., by a factor of 2),
and execution loops back to step 1110. If the number of points
does not exceed the first threshold, execution proceeds to step
1150, where the number of points is compared to a second
threshold (e.g., 30% of the first threshold or some other value
indicating too few points). If the number of points falls below
the second threshold, execution proceeds to step 1160, where
the query box creation sub-process 644 increases the length
of the query box. No further checking is performed on the
increased query box, for example, to avoid a possible infinite
loop of increasing and decreasing the query box size. Execu-
tion proceeds to step 1170.

Returning to step 1150, if the number of points does not fall
below the second threshold, execution proceeds directly to
step 1170. At step 1170, the points of the query box are
extracted and the query box parameters are returned for initial
use during creation of a next query box. By initially trying to

10

15

20

25

30

35

40

45

50

55

60

65

8

use the same query box parameters, one may often avoid the
need to resize the next query box when the point density is
similar along a followed linear feature.

FIG. 12 is an example of query boxes 1210, 1220, 1230,
1240 aligned with a curving linear feature. The query boxes
are each aligned with the current search direction to minimize
the number of unnecessary points examined. Further, the
query boxes have similar parameters, as the point density
along the linear feature is similar.

FIG. 13 is an example sequence of steps 1300 executed by
the points following sub-process 645 to follow points of a
linear feature in a point cloud. The sequence of is steps 1300
may represent steps performed as part of the step 920 in FIG.
9. At step 1310, the points following sub-process 645
searches within the fetched points for any points located in a
search sphere positioned around the current search location.
In one embodiment, the radius of the search sphere may be set
to the user-selected maximum width from FIG. 7. At step
1315, it is determined where any points are found. If points
are found, execution proceeds to step 1320, where the inter-
section detection sub-process 646 is triggered to check if an
intersection point of the linear feature has been reached. If an
intersection is reached, a points following status may be set to
intersection found status, indicating an intersection has been
reached. Based on user-input in the user interface of FIG. 7,
the intersection detection sub-process 646 may be disabled,
for example, to allow for faster execution when such detec-
tion is not needed. In such case, step 1320 may simply be
skipped over. At step 1325, the direction and location of
search is updated. In some embodiments, update of the direc-
tion and location of search may occur intermittently, such
that, ifexecution loops through steps 1310 to 1340 repeatedly,
step 1325 is executed in only certain ones of those iterations.
For example, step 1325 may be executed only once for every
predetermined number of iterations (e.g. for every 2 itera-
tions) through steps 1310 to 1340, and skipped the other
times.

At step 1325, the direction and location of search may be
updated by computing the centroid of the points found at step
1310, computing a new direction from the last centroid com-
puted, and then comparing an angle between the new search
direction and the current search direction to a predetermined
angle threshold. If the angle is less than the angle threshold
(e.g., 45°), and if a distance between the centroid and the last
centroid is greater than zero, the current search direction is set
to the new search direction and the current search location is
set to the centroid. The angle threshold may serve to decrease
jittering effects when updating the direction and location.

At step 1330, the current search location is then advanced
in the current search direction. The displacement distance
which the search location is advanced may be set to a value,
for example, to the radius of the search sphere. At step 1335,
the current direction is then checked to determine if it has
changed because the current linear segment is curving. The
direction is deemed to have changed if the distance between
the current location and a reprojection of the current location
on the original direction vector is greater than a threshold. In
one embodiment, the threshold is set to be the search sphere’s
radius multiplied by a factor (e.g., 0.5).

At step 1340, the points following sub-process 645 checks
if points following for the current segment of the linear fea-
ture should be stopped. If a direction change has been
detected 1335, or if an intersection has been detected at step
1320, points following generally should be stopped. If points
following should be stopped, execution proceeds to step 1365
where the points following sub-process 645 returns the points
found describing the current segment of the linear feature,

US 9,406,138 B1

9

and returns the current points following status. If points fol-
lowing should not be stopped, execution loops back to step
1310. Further the points following status may be set to can
continue status to indicate the points following sub-process
645 can continue to follow the current linear feature.

Returning back to step 1315, if no point is found inside the
search sphere, execution proceeds to step 1345, and the points
following sub-process 645 tries to turn to find points. The
turning may involve searching a segment connected to the end
of the current segment, which has an angle with the current
segment greater than would be considered in the direction
update of step 1325. The process used to turn in step 1345
may be similar to the process used for detecting an intersec-
tion. At step 1350, it is determined whether there is a turn. If
a turn is found, execution proceeds to step 1360, and the
points following sub-process 645 updates the current location
and the current direction, and triggers a direction modifica-
tion. As part of step 1360, the points following status may be
set to end of line status if the direction modification between
the new and old direction is greater than a threshold. The
threshold may be set by default to a value (e.g. 90°) and
changed by the user, for example, by setting a configuration
variable. Otherwise, if a turn is not found, execution proceeds
to step 1355, where the points following sub-process 645
checks ifthe current location is outside the current query box.
Ifthe current location is located outside the current query box,
more points need to be fetch. The points following status may
be set to need more points status, to indicate that more points
need to be fetched around the current location in the point
cloud (step 910 of FIG. 9). Otherwise, the points following
status may be set to end of line status

FIG. 14 is an example sequence of steps 1400 executed by
the intersection detection sub-process 646 to check if an
intersection point of the linear feature has been reached. The
sequence of steps 1400 may represent steps performed as part
of the step 1320 in FIG. 13. At step 1405, the intersection
detection sub-process 646 checks if a percentage of the num-
ber of points in the search sphere divided by a number of
points in a larger search sphere is greater than a given thresh-
old. The larger search sphere may be set to a value, for
example, to twice the size of the search sphere. The given
threshold alter-natively may be set to any of a variety of
values. In one embodiment the given threshold is set to 0.7.
Inclusion of step 1405 may help to minimize the number of
times a full intersection check is needed, to speed the inter-
section detection sub-process 646. In some embodiments,
step 1405 may be omitted. Further, step 1405 may be omitted
if the intersection detection sub-process 646 is being applied
to turn detection (i.e. step 1345 of FIG. 13).

At step 1410, the intersection detection sub-process 646
searches points around the current location in search direc-
tions at search displacements. FIG. 15 is a diagram 1500
showing an example configuration of search spheres disposed
at search directions and separated from the current search
location by search displacements. The angle between all
neighboring search directions may the same. Similarly, the
search displacements may all be the same for all search
spheres. In one configuration, the number of search directions
may be set to 16, and the search displacements set to be equal
to the search sphere radius.

Returning to FIG. 14, after searching points around the
current location in search directions at search displacements,
atstep 1415, a determination is made whether there are points
in any search sphere along a search direction. If there are no
points, execution proceeds to step 1420, where the points
following status is set to end of line status. If there are points,
execution proceeds to step 1425, where the intersection

25

35

40

45

60

10

detection sub-process 646 determines any search directions
whose respective search spheres yields a number of points
greater than a minimum number of points. The minimum
number of points may be set to a percentage of the maximum
number of points found in any search sphere, or to some other
value. In one embodiment, the percentage may be set to 10%.
At step 1430, the intersection detection sub-process 646
determines whether more than one direction has been found.
If there is only one direction with the minimum number of
points, execution proceeds to step 1435, where the intersec-
tion detection sub-process 646 computes a new search direc-
tion. The new search direction is computed using the direction
whose angle with the current search direction is the smallest,
and for which some points have been found. A new search
direction from the centroid of the points found for this search
direction and the current search location is computed. If both
the centroid and the current search location are the same, the
new search direction is set directly to the direction whose
angle with the current search direction is the smallest, and for
which some points have been found during step 1410. At step
1440, the points following status is set to can continue status.

If there is more than one direction with the minimum
number of points, execution proceeds to step 1445 where an
attempt is made to follow the points along each such direction
for a fixed number of searches. At step 1450, the intersection
detection sub-process 646 determines whether, by following
the points, a location outside the query box has been reached.
If a location outside the query box has been reached, execu-
tion proceeds to step 1455, where the points following status
is setto need more points status. If'a location outside the query
box has not been reached, execution proceeds to step 1460,
where the linear feature merging sub-process 647 (described
in more detail below) tries to merge linear features found for
the kept directions. Then, at step 1465, the intersection detec-
tion sub-process 646 determines if there is at least one
unmerged linear features found for the kept directions. If
there is not at least one unmerged linear features found for the
kept directions, execution proceeds to step 1470, where the
points following status is set can continue status. If there is at
least one unmerged linear features found for the kept direc-
tions, execution proceeds to step 1475, where a check is
performed whether more than one linear feature is found. If
more than one linear feature is found, execution proceeds to
step 1480 where the points following status is set to intersec-
tion found status. If only one linear feature is found, execution
proceeds to step 1485, where the intersection detection sub-
process 646 computes a new search direction, using the
search direction whose angle difference with the current
search direction is minimal. Then at step 1490, the points
following status is set to can continue status. Finally, at step
1495, the intersection detection sub-process 646 returns the
points following status and possibly the new search direction.

As mentioned above, linear features may be merged during
operation of the intersection detection sub-process 646. Often
linear features found in different directions may be treated as
part of the same linear feature. FIG. 16 is a diagram 1600
illustrating linear features that should be merged. Linear fea-
tures 1610, 1620, 1630 should be merges to be part of a
horizontal linear feature attached to an intersection, while
linear feature 1640 should be treated as an angled linear
feature attached to the intersection.

FIG. 17 is an example sequence of steps 1700 executed by
the linear feature merging sub-process 647 to merge linear
features. The sequence of steps 1700 may represent steps
performed as part of the step 1460 in FIG. 14. The steps 1700
are explained in reference to FIG. 18. FIG. 18 is a diagram
1800 illustrating properties used by the linear feature merging

US 9,406,138 B1

11

sub-process 647 to merge linear features. At step 1710, linear
feature direction vectors (F1G. 18) are computed for each kept
direction based on the current search location (FIG. 18), and
the endpoints of the linear features found for the kept direc-
tion, if any. At step 1720, for each direction vector, the linear
feature merging sub-process 647 searches the other direction
vector for which the angle between the two direction vectors
is minimal. At step 1730, the linear feature merging sub-
process 647 determines whether there is at least one minimal
angle between two direction vectors that is less than a thresh-
old. In one embodiment, the threshold may be set to 11.25°,
however a variety of other values may be used. If there is at
least one minimal angle between two direction vectors that is
less than a threshold, execution proceeds to step 1740, where
all the pairs of direction vectors with angles less than the
threshold are merged together. The merging may be per-
formed by computing the sum of the direction vectors and
normalizing the resulting vector. Then, at step 1750, the linear
feature merging sub-process 647 creates a new direction vec-
tors list containing any direction vectors resulting from the
merging operation, and any direction vectors that weren’t
merged. Execution then loops back to step 1720. Execution
continues to loop through steps 1720-1750 until at step 1730
the result is negative. At which point, there are no more
direction vectors to merge and execution proceeds to step
1760, where the linear feature merging sub-process 647
returns the linear feature direction vectors that cannot be
merged further.

FIG. 19 is an example sequence of steps 1900 executed by
a line segment creation sub-process 648 to create a line seg-
ment modeling a linear segment of a linear feature. The
sequence of steps 1900 may represent steps performed as part
of the step 940 in FIG. 9. At step 1905, the line segment
creation sub-process 648 tries to create a line segment from
the linear segment points found by the points following sub-
process 645. The line segment creation sub-process 648 may
use a RANSAC algorithm to search for a line segment that
adequately represents the points found. One parameter used
by the RANSAC algorithm is a maximum distance between a
point and a potential line segment allowed for the point to be
considered as part of the line segment. In one embodiment,
this maximum distance may be set to the search radius mul-
tiplied by a scaling factor. The scaling factor may be setto 0.5
or some other value. At step 1910, a check is performed of
whether the RANSAC algorithm has been able to create a
line. If a line has not been created, execution proceeds to step
1915, where the line segment creation sub-process 648
checks if the current points following status is set to intersec-
tion found status or need more points status. If the current
points following status has not been set to intersection found
status or need more points status, execution proceeds to step
1920, where the points following status is set to end of line
status. If the current points following status has been set to
intersection found status or need more points status, execu-
tion proceeds to step 1925, where the line segment creation
sub-process 648 returns that a line segment cannot be found
from the points provided.

Returning to step 1910, ifthe RANSAC algorithm has been
able to create a line, execution proceeds to step 1930, where
a check is performed whether line segment is longer than a
threshold. In one embodiment, the threshold is set to the
maximum line width specified by the user in the user interface
700 of FIG. 7. If the length of line is shorter than the threshold,
execution proceeds to step 1925, where it is returned that a
line segment cannot be found from the points provided. If the
length of the line is longer than the threshold, execution
proceeds to step 1935, where the line segment creation sub-

10

15

20

25

30

35

40

45

50

55

60

65

12

process 648 checks if a direction change is less than a thresh-
old. This threshold may be is the same one discussed above in
relation to step 1360 of FIG. 13, or some other value. If the
direction change is not less than the threshold, execution
proceeds to step 1940, where the line segment creation sub-
process 648 sets the points following status to end of line
status. Then, at step 1945, it returns that no line segment can
be found. If the direction change is less than the threshold,
execution proceeds to step 1950, where the line segment
creation sub-process 648 updates the search direction. The
new search direction is simply the direction of the line found.
Then, at step 1955, it returns the line segment found.

As mentioned above, the gap jumping sub-process 649 of
the linear feature extraction process 642 may determine
whether the end of the linear feature is a true end, or is simply
an occlusion of the linear feature or a non-continuous portion
of a linear feature (e.g., a space between dashed lane marking
on a roadway). If it is determined there is a jumpable gap, the
gap may be jumped and further linear segments of the linear
feature followed after the gap.

In general, the gap jumping sub-process 649 may operate
to search for a location around which a sufficient number of
points are present. The searching may occur within a cone-
like search region. FIG. 20 is a diagram 2000 showing a top
view of an example cone-like search region that may be used
by the gap jumping sub-process 649 when jumping gaps of a
non-continuous linear feature (e.g., a dashed marking). The
cone-like search region may be defined by two parameters: a
search angle and a maximum jumping distance. FIG. 21 is an
isometric view 2100 of the example cone-like search region
from FIG. 20.

While the search region is cone-like, in one embodiment, it
is not a true cone. Instead, it is composed of a shape formed
from a plurality of search spheres whose centers are distrib-
uted along a series of concentric circles arranged in 3-D
space. The union of all the search spheres centered along the
concentric circles appears cone-like.

FIG. 22 is a front view 2200 of example search spheres
distributed along a series of concentric circles forming a
cone-like search region. The concentric circles are positioned
relative to a concentric circle center location. Only three
example search spheres are shown in FIG. 22, for clarity.
However, it should be understood that in a real implementa-
tion a large number of search spheres would be homog-
enously distributed along is each concentric circle, such that
all the area along each concentric circle is covered. The num-
ber of concentric circles may depend on the search angle and
the current position of the concentric circle center location.

FIG. 23 is an example sequence of steps 2300 executed by
gap jumping sub-process 649 to extract points around a
search location. The sequence of steps 2300 may represent
steps performed as part of the step 970 in F1G. 9. At step 2310,
the gap jumping sub-process 649 sets the current concentric
circle center location to the current search location. At step
2315, the gap jumping sub-process 649 checks if the current
concentric circle center location is outside the current query
box. If the current concentric circle center location is outside
the current query box, execution proceeds to step 2320, where
the points following status is set to need more points status.
Then, at step 2325, the gap jumping sub-process 649 returns
that there is not a jumpable gap, and therefore gap jumping
cannot be performed. If the current concentric circle center
location is not outside the current query box, execution pro-
ceeds to step 2330, where the gap jumping sub-process 649
searches points around the current concentric circle center
location. At step 2335, the gap jumping sub-process 649 tests
if the number of points found around the current concentric

US 9,406,138 B1

13

circle center location is greater than a threshold. In one
embodiment, the threshold is set to 0, however, it can have
other values. If the number of points found around the current
concentric circle center location is greater than the threshold,
the gap jumping sub-process 649 proceeds to step 2355,
where the current search direction is updated. Then at step
2360 the current concentric circle center is returned as the gap
jumping location. If at step 2335 the number of points found
around the current concentric circle center location is not
greater than the threshold, execution proceeds to step 2340,
where the gap jumping sub-process 649 checks if there is a
concentric circle to search along. Ifthere is a concentric circle
to search along, then execution proceeds to step 2345, where
a search is performed around the concentric circle with the
most points. As part of step 2345, a check of whether the
search location is outside the query box may be performed,
and if this is the case, execution may jump immediately to
steps 2320 and 2325. Provided this is not the case, execution
proceeds to step 2350, where the gap jumping sub-process
649 checks if the number of points at the location along the
current is concentric circle with the most points is greater than
athreshold. In one embodiment, the threshold may be equal to
the threshold used in step 2335. If the number of points is
greater than the threshold, execution proceeds to step 2355,
where the current search direction is updated. Then, at step
2360 a location around the concentric circle with the most
points is returned as the gap jumping location. A new search
direction may be defined as a vector extending from the
current search location to the gap jumping location. The
search direction may be updated when the angle between the
new search direction and the current search direction is less
than a threshold. In one embodiment, this threshold is 45°,
however other values may be used.

If, at step 2350, the number of points is not greater than the
threshold, execution loops back to step 2340 where the gap
jumping sub-process 649 checks ifthere is another concentric
circle to check. At step 2340, if there is no other concentric
circle for the current concentric circle center location, execu-
tion proceeds to step 2365 where the concentric circle center
location is advanced along the current search direction to a
distance equaling the search radius. Then, at step 2370, the
gap jumping sub-process 649 checks if the distance between
the current search location and the current concentric circle
center location is greater than a threshold. If the gap jumping
distance is greater than the threshold, execution proceeds to
step 2375, where it is returned that there is no jumpable gap
and therefore gap jumping cannot be performed. In one
embodiment, the threshold can be set to the specified gap
jumping maximum length specified by the user in the user
interface 700 of FIG. 7. Otherwise, execution proceeds back
to step 2315, where a new concentric circle center location is
processed.

In summary, the above description provides a technique for
semi-automatically extracting a polyline from a linear feature
in a point cloud. While various specific embodiments are
described, it should be apparent that the technique may be
implemented more generally, to cover a variety of other
embodiments. A wide variety of modifications and/or addi-
tions to what is described above are possible. In general, it
should be understood that the above descriptions are meant to
be taken only by way of example.

Further, it should be understood that the above described
technique may be implemented in software, in hardware, or a
combination thereof. A software implementation may
include executable instructions that implement applications
stored in a non-transitory computer-readable medium, such
as a volatile or persistent memory device, a hard-disk, a

10

15

20

25

30

35

40

45

50

55

14

compact disk (CD), etc. A hardware implementation may
include processors, memory chips, programmable logic cir-
cuits, application specific integrated circuits, and/or other
types of hardware components. Further, a combined soft-
ware/hardware implementation may include both computer-
executable instructions stored in a non-transitory computer-
readable medium, as well as one or more hardware
components.

What is claimed is:
1. A method for semi-automatically extracting a polyline
from a linear feature in a point cloud, comprising:
receiving, from a user, a selected point in the point cloud
about the linear feature in the point cloud;
receiving, from the user, a starting search direction;
returning a plurality of line segments based on the linear
feature by a process executing on an electronic device,
by:
successively following one or more linear segments of
the linear feature, beginning with a current search
direction set to the starting search direction and a
current search location set about the selected point,
and modeling the linear segments with line segments,
wherein
when an end of a linear segment is reached, determining
whether there is an intersection based on detection of
greater than a threshold number of points of the linear
feature in multiple directions,
in response to there being an intersection, prompting the
user to provide an updated search direction that is
used as the current search direction,
in response to there not being an intersection, continuing
to successively follow one or more linear segments of
the linear feature after the intersection, and modeling
the one or more linear segments after the intersection
with line segments,
when an end of a linear segment is reached, determining
whether there is a jumpable gap,
in response to determining there is a jumpable gap,
continuing to successively follow one or more linear
segments of the linear feature after the jumpable gap,
and modeling the one or more linear segments after
the jumpable gap with line segments, and
in response to there not being a jumpable gap, returning
the line segments; and
creating a polyline from the returned line segments.
2. The method of claim 1, wherein the following one or
more linear segments of the linear feature comprises:
fetching only a limited number of points around the current
search location in the point cloud foruse in following the
one or more linear segments of the linear feature.
3. The method of claim 2, wherein the fetching points
further comprises:
creating a query box;
extracting points of the point cloud that fall within the
query box;
comparing a number of points extracted to one or more
thresholds;
increasing or decreasing a dimension of the query box
based on the comparing; and
returning extracted points.
4. The method of claim 1, wherein the following one or
more linear segments of the linear feature further comprises:
searching for points around the current search location;
advancing the current search location; and
when a determination is made that point following should
stop, returning followed points.

US 9,406,138 B1

15

5. The method of claim 4, wherein the following one or
more linear segments of the linear feature further comprises:

determining the linear feature has turned; and

updating the current search direction and the current search

location based on the turn.

6. The method of claim 1, wherein in response to there
being an intersection, further determining there are groups of
points having directions that differ by an angle less than a
threshold and merging the groups of points having directions
that differ by the angle less than the threshold.

7. The method of claim 1, wherein modeling the linear
segments with line segments further comprises:

creating a line segment by applying a RAMdom SAmple

Consensus (RANSAC) algorithm to points of the linear
segment.
8. The method of claim 1, wherein determining there is a
jumpable gap further comprises:
searching for a location around which at least a threshold
number of points are present within a cone-like search
region extending from the current search location;

updating the current search direction based on the location
within the cone-like search region; and

continuing to follow one or more linear segments of the

linear feature from the location within the cone-like
search region.

9. The method of claim 1, wherein the point cloud repre-
sents one or more objects in the physical environment.

10. An apparatus to semi-automatically extract a polyline
from a linear feature in a point cloud, comprising:

a display screen configured to display a user interface;

a processor; and

a memory coupled to the processor and configured to store

instructions for a line extraction software process that
when executed by the processor is operable to:
successively follow one or more linear segments of the
linear feature in the point cloud, beginning with a
current search location set about a selected point and
a current search direction set to a starting search direc-
tion that are provided by a user in the user interface
and model the linear segments with line segments,
wherein
when an end of a linear segment is reached, determine
whether there is an intersection based on detection
of greater than a threshold number of points of the
linear feature in multiple directions,
in response to there being an intersection, prompt the
user to provide an updated search direction that is
used as the current search direction,
in response to there not being an intersection, con-
tinue to successively follow one or more linear
segments of the linear feature after the intersection,
and model the one or more linear segments after the
intersection with line segments,
when an end of a linear segment is reached, determine
whether there is a jumpable gap,
in response to determining there is a jumpable gap,
continue to successively follow one or more linear
segments of the linear feature after the jumpable
gap, and model the linear segments after the jum-
pable gap with line segments,
in response to there not being a jumpable gap, return
the line segments; and
create a polyline from the returned line segments.

11. The apparatus of claim 10, wherein the line extraction
software process when executed by the processor is further
operable to:

5

10

15

20

25

35

40

45

50

55

60

65

16

fetch only a limited number of points around the current
location in the point cloud for use in following the one or
more linear segments of the linear feature.

12. The apparatus of claim 11, wherein the line extraction
software process when executed by the processor is further
operable to:

create a query box;

extract points of the point cloud that fall within the query

box;

compare a number of points extracted to one or more

thresholds;

increase or decrease a dimension of the query box based on

the comparing; and

return extracted points.

13. The apparatus of claim 10, wherein the line extraction
software process when executed by the processor is further
operable to:

search for points around the current search location;

advance the current search location; and

when a determination is made that point following should

stop, return followed points.

14. The apparatus of claim 13, wherein the line extraction
software process when executed by the processor is further
operable to:

determine the linear feature has turned; and

update the current search direction and the current search

location based on the turn.

15. The apparatus of claim 10, wherein the line extraction
software process when executed by the processor is further
operable to:

in response to there being an intersection, further deter-

mine there are groups of points having directions that
differ by an angle less than a threshold and merge the
groups of points having directions that differ by the
angle less than the threshold.

16. The apparatus of claim 10, wherein the line extraction
software process when executed by the processor is further
operable to:

create a line segment by applying a RANdom SAmple

Consensus (RANSAC) algorithm to points of a linear
segment.
17. The apparatus of claim 10, wherein the line extraction
software process when executed by the processor is further
operable to:
search for a location around which at least a threshold
number of points are present within a cone-like search
region extending from the current search location;

update the current search direction based on the location
within the cone-like search region; and

continue to follow one or more linear segments of the linear

feature from the location within the cone-like search
region.

18. A non-transitory computer-readable medium that
includes instructions executable on a processor, the instruc-
tions, when executed, operable to:

receive a user-provided selected point in a point cloud

about a linear feature in a point cloud;

receive a user-provided starting search direction;

follow the linear feature beginning with a current search

direction set to be the starting search direction and a

current search location set to be about the selected point,

by successively:

searching for points associated with the linear feature in
a plurality of search spheres disposed about the cur-
rent search location,

US 9,406,138 B1

17

determining whether there is greater than a threshold
number of points of the linear feature in multiple
search spheres of the plurality of search spheres,

when there is not greater than the threshold number of
points of the linear feature in multiple search spheres,
extending the linear feature by detecting one or more
points that define a linear segment, modeling the lin-
ear segment with a line segment, advancing the cur-
rent search location, and updating the current search
direction, and

when there is greater than the threshold number of points
of the linear feature in multiple search spheres, deter-
mining an intersection is reached;

in response to there being an intersection, prompt a user to

provide an updated search direction, and continue to
follow the linear feature with the current search direction
set to the updated search direction; and

create a polyline from any line segments.

19. The non-transitory computer-readable medium of
claim 18, wherein the threshold number of points is based on
a percentage of a maximum number of points found in any
search sphere.

20. The non-transitory computer-readable medium of
claim 18, wherein the instructions to determine an intersec-
tion is reached, when executed, are further operable to:

when there is greater than the threshold number of points of

the linear feature in multiple search spheres, attempting

10

20

25

18

to follow the linear feature in the multiple search direc-
tions for a number of searches;

determine whether the linear feature in two or more of the

multiple search directions differs by an angle less than a
threshold angle;

when the linear feature in the two or more search directions

differs by an angle less than the threshold angle, merging
the linear feature in the two or more search directions
into a linear feature in one direction; and

when there is still a linear feature in multiple search direc-

tions after merging, determine the intersection is
reached.

21. The non-transitory computer-readable medium of
claim 18, wherein the instructions, when executed, are further
operable to:

when an end of a linear segment is reached, determine

whether there is a jumpable gap;

in response to determining there is a jumpable gap, con-

tinuing extending the linear feature by successively
detecting one or more points that define a new linear
segment, modeling the new linear segment with a line
segment, advancing the current search location, and
updating the current search direction; and

inresponse to there not being a jumpable gap, returning any

line segments for creating the polyline.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,406,138 B1
APPLICATION NO. : 14/029576
DATED - August 2, 2016

INVENTOR(S) : Mathieu St-Pierre

Page 1 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 1, Line 23 reads:

large numbers of individual points, is point clouds may rep-
Should read:

large numbers of individual points, point clouds may rep-

Column 2, Line 33 reads:

point is cloud is viewed from another perspective.
Should read:

point cloud is viewed from another perspective.

Column 3, Line 37 reads:

been reached and re-quest the user provide an appropriate
Should read:

been reached and request the user provide an appropriate

Column 3, Line 50 reads:

reader, and does not imply is that the features mentioned
Should read:

reader, and does not imply that the features mentioned

Column 4, Line 58 reads:

any of a variety of commercially available pro-cessors, such
Should read:

any of a variety of commercially available processors, such

Signed and Sealed this
Seventh Day of February, 2017

Debatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 9,406,138 B1

Column 6, Line 16 reads:

is step 850, the user is prompted to enter a starting direction
Should read:

step 850, the user is prompted to enter a starting direction

Column 6, Line 57 reads:

points need to be fetched, is execution loops back to step 910,
Should read:

points need to be fetched, execution loops back to step 910,

Column 7, Line 35 reads:

width and height may be set to have a ratio of is width-to-
Should read:

width and height may be set to have a ratio of width-to-

Column 8, Line 12 reads:

linear feature in a point cloud. The sequence of is steps 1300
Should read:

linear feature in a point cloud. The sequence of steps 1300

Column 9, Line 42 reads:

threshold alter-natively may be set to any of a variety of
Should read:

threshold alternatively may be set to any of a variety of

Column 12, Line 2 reads:

old. This threshold may be is the same one discussed above in
Should read:

old. This threshold may be the same one discussed above in

Column 13, Line 21 reads:

current is concentric circle with the most points is greater than
Should read:

current concentric circle with the most points is greater than

